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35 [91.-EDGAR KARST, The Second 2500 Reciprocals and their Partial Sums of all 
Twin Primes (p, p + 2) between (102911, 102913) and (239387, 239389), Depart- 
ment of Mathematics, University of Arizona, Tucson, Arizona, February 1972. 
Ms. of 253 computer sheets deposited in the UMT file. 

This manuscript table is a direct continuation of one [1] by the author giving 20D 
reciprocals of the first 2500 twin primes, together with 20D cumulative sums of 
these reciprocals. As in the previous table a useful supplementary table of two com- 
puter sheets here lists the first member of each of the subject prime pairs. 

The author states that comparison of his list of twin primes with the tables of 
Selmer & Nesheim [2] and of Tietze [3] has revealed no discrepancies. 

The announced motivation for the present tables is the testing of the author's 
conjecture that the sum of the reciprocals of the twin primes (counting 1 as a prime) 
closely approximates ir. However, the calculation of Froberg [4] implies that this sum 
to 4D is 3.0352, which does not appear to substantiate this conjecture to any 
reasonable degree. 

J. W. W. 
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4. CARL-ERIK FROBERG, "On the sum of inverses of primes and of twin primes," Nordisk 
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3619 .-ELVIN J. LEE & JOSEPH S. MADACHY, "The history and discovery of amicable 
numbers-Part 1," J. Recreational Math., v. 5, April 1972. 

This is the text of the published version of our previously reviewed [1]. The table 
of amicable numbers has been increased from the previous 977 pairs to 1095 pairs 
and includes all pairs known to the authors through the end of 1971. The table is not 
given here but will follow in "succeeding issues" of the Journal of Recreational 
Mathematics. 

For more detail of the contents of this paper see our previous review [1]. The 
main change in the present edition, besides a second author (the editor of JRM) 
and a slightly changed title, is the inclusion of brief reports on the subsequent work 
of Henri Cohen, Walter Borho, A. Wolf, Richard David and Harry Nelson. These 
authors account for the extra 118 pairs in the table. No doubt there will be a supple- 
ment at the end of the table since new pairs are still coming in. 

The paper lists a new "aliquot 4-cycle" due to R. David, and subsequently David 
found three others. Adding these to Cohen's eight cycles and Borho's one gives a 
present total of thirteen 4-cycles. Counting Tuckerman's new perfect number, which 
is also listed here, the number of cycles satisfying s'k)(n) = n is now 24 for k = 1, 
1095 for k = 2, 13 for k= 4, and 1 each for k = 5 and 28. There still are none for 
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k = 3 (called "crowds" in England) but Borho's analytical work may assist in 
settling this. 

It is stated here that no amicable pair is known that does not terminate an aliquot 
chain. A priori, the reviewer sees no compelling reason to doubt the existence of one 
since, analogously, the perfect number 28 does not terminate a chain. 

D. S. 

1. ELVIN J. LEE, The Discovery of Amicable Numbers, Math. Comp., v. 24, 1970, pp. 
493-494, RMT 40. 

37 [9].-RUDOLF ONDREJKA, Mersenne Primes and Perfect Numbers, ms. of 91 
computer sheets (undated) deposited in the UMT file. 

Herein are listed in decimal, octal, and binary form, respectively, the exact values 
of the first 23 Mersenne primes and the corresponding perfect numbers. Also presented 
are such relevant statistics as the number of decimal digits in each number, the 
corresponding digital sum, the frequency distribution of these digits and the associated 
cumulative frequency distribution. 

The author includes explicit expressions of the perfect numbers as sums of cubes 
of successive odd numbers, sums of successive powers of 2, and sums of arithmetic 
progressions. 

Appropriate entries in these- tables were compared by the author with correspond- 
ing results of Uhler [1]. Also, the eighteenth Mersenne prime was checked against 
the value of Riesel [2], and the last three Mersenne primes listed here were checked 
against the corresponding results of Gillies [3]. 

Furthermore, this reviewer has successfully compared the statistics herein with 
corresponding data found by Lal [4]. 

It seems appropriate to note here that an additional Mersenne prime has been 
recently announced by Tuckerman [5]. 

J. W. W. 
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1968, p. 232, RMT 20.) 

5. B. TUCKERMAN, "The 24th Mersenne prime," Proc. Nat. Acad. Sci. U.S.A., v. 68, 1971, 
pp. 2319-2320. 

38[9].-G. AARON PAXSON, Table of Aliquot Sequences, Standard Oil Co. of Cali- 
fornia, 225 Bush Street, San Francisco, California 94120, computer output, 134 
sheets filed in stiff covers and deposited in the UMT file in 1966. 

Let s(n) be the sum of the aliquot parts of n, i.e. divisors of n other than n itself. 
According as s(n) = n, < n or > n, n is perfect, deficient or abundant. Define sA(n) = n, 
s k+ (n) = (n)) k _ O. The author tabulates sk(n) for k = 0, 1, 2, * * * , and each 


